Using groundwater age distributions to estimate the effective parameters of Fickian and non-Fickian models of solute transport.

نویسندگان

  • Nicholas B Engdahl
  • Timothy R Ginn
  • Graham E Fogg
چکیده

Groundwater age distributions are used to estimate the parameters of Fickian, and non-Fickian, effective models of solute transport. Based on the similarities between the transport and age equations, we develop a deconvolution based approach that describes transport between two monitoring wells. We show that the proposed method gives exact estimates of the travel time distribution between two wells when the domain is stationary and that the method still provides useful information on transport when the domain is non-stationary. The method is demonstrated using idealized uniform and layered 2-D aquifers. Homogeneous transport is determined exactly and non-Fickian transport in a layered aquifer was also approximated very well, even though this example problem is shown to be scale-dependent. This work introduces a method that addresses a significant limitation of tracer tests and non-Fickian transport modeling which is the difficulty in determining the effective parameters of the transport model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Analytical Model of Fickian and Non-Fickian Dispersion in Evolving-Scale Log-Conductivity Distributions

The characteristics of solute transport within log-conductivity fields represented by power-law semi-variograms are investigated by an analytical Lagrangian approach that accounts for the automatic frequency cut-off induced by the initial contaminant plume size. The transport process anomaly is critically controlled by the magnitude of the Péclet number. Interestingly enough, unlike the case of...

متن کامل

Multiscaling fractional advection-dispersion equations and their solutions

[1] The multiscaling fractional advection-dispersion equation (ADE) is a multidimensional model of solute transport that encompasses linear advection, Fickian dispersion, and super-Fickian dispersion. The super-Fickian term in these equations has a fractional derivative of matrix order that describes unique plume scaling rates in different directions. The directions need not be orthogonal, so t...

متن کامل

Investigating future changes in groundwater quantity and quality in the Khash alluvial aquifer through numerical groundwater flow and solute transport modeling

The Khash alluvial aquifer, in Sistan and Baluchestan Province, supplies the water needed for agriculture, drinking, and industry in the Khash area. In order to predict the future status of groundwater level and water quality, and to find aquifer management solutions, groundwater flow and solute transport models were developed using MODFLOW and MT3DMS. GMS 10.3 was used to develop the model. Ca...

متن کامل

Delay mechanisms of non-Fickian transport in heterogeneous media

[1] Fickian models of diffusion often fail to describe transport phenomena in heterogeneous environments due to their inability to capture the sub-scale fluctuations. We present an effective description of non-Fickian behavior that reflects the dichotomy between the continuum nature of Fick’s law and the finite (effective) observation scale associated with experimental studies of transport phen...

متن کامل

Anomalous mixing and reaction induced by superdiffusive nonlocal transport.

Spatially nonlocal transport describes the evolution of solute concentration due to mass transfer over long ranges. Such long-range mass transfer, present in many flow situations, changes the character of mixing and consequent chemical reactions. We study mixing in terms of the scalar dissipation and reaction rates for mixing-limited equilibrium reactions, using the space-fractional advection-d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in water resources

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2013